Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity.
نویسندگان
چکیده
Atrial natriuretic peptide (ANP), a peptide hormone produced by the heart, exerts a chronic hypotensive effect. Knockout mice with a homozygous disruption of the pro-ANP gene (-/-) are incapable of producing ANP and are hypertensive relative to their wild-type (+/+) siblings. Previous studies showed that arterial blood pressure (ABP) was further increased in conscious -/- mice kept for 2 wk on 2% salt, but not in anesthetized -/- mice after 1 wk on 8% salt. To determine whether inconsistencies in observed effects of salt on ABP of -/- mice are due to duration of increased salt intake and/or the state of consciousness of the animals, we measured ABP from an exteriorized carotid catheter during and after recovery from anesthesia with ketamine-xylazine in adult +/+ and -/- mice kept on low (LS; 0.008% NaCl)- or high (HS; 8% NaCl)-salt diets for 3-4 wk. Conscious ABP ± SE (mmHg) of +/+ mice did not differ significantly on either diet (HS, 113 ± 3; LS, 110 ± 5). However, on HS diet -/- mice had significantly higher ABP (135 ± 3; P < 0.001) than both -/- (115 ± 2) and +/+ (110 ± 5) mice on LS diet. Anesthesia decreased ABP in all groups, but the genotype- and diet-related differences were preserved. Plasma renin activity (PRA, ng ANG I ⋅ ml-1 ⋅ h-1) in blood collected at termination of experiment was appropriately different on the 2 diets in +/+ mice (HS, 4.9 ± 1.9; LS, 21 ± 2.8). However, PRA failed to decrease in -/- mice on HS diet (HS, 18 ± 2.9; LS, 19 ± 3.7). Independent of genotype, concentration of endothelin-1 (ET-1, pg/mg protein) and endothelial constitutive NOS (ecNOS, density/100 μg protein) was significantly elevated in kidneys of mice fed on HS diet (ET-1 -/-, 31 ± 4.7 and +/+, 32 ± 4.1; ecNOS -/-, 160 ± 19 and +/+, 156 ± 19) compared with mice fed on LS diet (ET-1 -/-, 19 ± 1.9 and +/+, 21 ± 1.8; ecNOS -/-, 109 ± 13 and +/+, 112 ± 18). We conclude that, regardless of the state of alertness, -/- mice develop salt-sensitive hypertension after prolonged feeding on HS, in part due to their inability to reduce PRA, whereas the specific renal upregulation of ecNOS and ET-1 in response to HS intake may be an ANP-independent adaptive adjustment aimed at improving kidney function and counteracting the pressor effect of salt.
منابع مشابه
Salt-sensitive hypertension in ANP knockout mice is prevented by AT1 receptor antagonist losartan.
Mice harboring a functional deletion of the pro-atrial natriuretic peptide (ANP) gene (-/-) develop salt-sensitive hypertension relative to their wild-type (+/+) counterparts after prolonged (>1 wk) maintenance on high-salt (HS, 8% NaCl) diet. We reported recently that the sensitization of arterial blood pressure (ABP) to dietary salt in the -/- mice is associated with failure to downregulate p...
متن کاملNatriuretic peptides buffer renin-dependent hypertension.
The renin-angiotensin-aldosterone system and cardiac natriuretic peptides [atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP)] are opposing control mechanisms for arterial blood pressure. Accordingly, an inverse relationship between plasma renin concentration (PRC) and ANP exists in most circumstances. However, PRC and ANP levels are both elevated in renovascular hypertension...
متن کاملAugmented expression of cardiac atrial natriuretic peptide system in hypertensive rats.
The present study was aimed at investigating the regulation of atrial natriuretic peptide (ANP) system in association with either enhanced or attenuated activity of the renin-angiotensin system (RAS). The cardiac tissue mRNA and peptide levels of ANP were measured in rats with two-kidney, one clip (2K1C) or deoxycorticosterone acetate (DOCA)-salt hypertension. Plasma renin concentration was inc...
متن کاملImpaired sodium excretion and salt-sensitive hypertension in corin-deficient mice
Corin is a protease that activates atrial natriuretic peptide, a cardiac hormone important in the control of blood pressure and salt-water balance. Here we examined the role of corin in regulating blood pressure and sodium homeostasis upon dietary salt challenge. Radiotelemetry-tracked blood pressure in corin knockout mice on a high-salt diet (4% sodium chloride) was significantly increased; ho...
متن کاملCreation and characterization of a renin knockout rat.
The renin-angiotensin system plays an important role in the control of blood pressure (BP) and renal function. To illuminate the importance of renin in the context of a disease background in vivo, we used zinc-finger nucleases (ZFNs) designed to target the renin gene and create a renin knockout in the SS/JrHsdMcwi (SS) rat. ZFN against renin caused a 10-bp deletion in exon 5, resulting in a fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 274 1 Pt 2 شماره
صفحات -
تاریخ انتشار 1998